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Some polymerization kinetic systems in the non-steady state were treated with a graphic theory. It is shown 
that this solving process is simpler than the general one. The authors' purpose is to illustrate the utility of 
graphic theory in polymer science, and to stimulate further interest in this topic. 
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INTRODUCTION 

The graphic theory is an important branch of com- 
binatory mathematics ~. It has undergone extensive de- 
velopment over the past twenty years and still accounts 
for a major portion of the research effort expended and its 
applications continue to grow rapidly. Successful appli- 
cations of the graphic theory in computer science 2, 
theoretical physics 3 and economics 4 have demonstrated 
its use in more and more fields. The subject of chemistry 
was introduced to graphic theory much earlier, however. 
The idea ofa q'ree' was successfully invoked by Cayley 5 to 
predict the isomeric forms of alkane in 1857. Later on 
quantum chemists represented topological matrices as 
graphs to calculate relevant parameters 6-s. The graphic 
theory was also adapted to the study of statistical 
thermodynamics in the non-equilibrum state 9'~°. In re- 
cent years, graphic theory has penetrated into polymer 
science. Some graphs are used to study random cond- 
ensation processes by analogy with the f-functional 
group al '~.  The graphs may also be applied to solve 
polymerization kinetic systems, especially in non-steady 
state cases~ 3,14. 

It is well known that it is a complicated task to solve the 
set of differential equations for such a reaction by the 
general method. However, this solving process will be 
simpler and more convenient is we used the Laplace 
transormation and graphic theory. This paper provides a 
graphic solution for some polymerization kinetics in non- 
steady state cases. 

The basic concept of the graph and its calculating rule 
The graph consists of a vertex and an edge. The graphic 

theory provides simple techniques for constructing mod- 
els of systems, and powerful methods for their analysis 
and optimization. 

For example, a matrix of order n x n, A = (aij) . . . .  may be 
represented as a graph consisting of n vertices. Each non- 
zero element a 0 in matrix A is an oriented edge which 
flows from i to j, 

Thus, the matrix 

Ei4 l A =  5 
6 

(1) 

can be shown as 

These graphs which consist of n vertices corresponding 
to n x n matrices are called Coates graphs. We introduce 
the calculating rule for a Coates graph as follows. 

A set of equations having the form 

a12 a22 X2 

a13 a23 a33 X3 
a14 a24 a34 a4 

(2) 

that is 4 linear equations with 4 unknowns X1, X2, X3 and 
X4 can be written more briefly as: 

A ' X = B  (3) 

where A, X and B represent the corresponding matrices in 
equation (2). 

Its coefficient matrix A may be shown as: 

The notations a ii and a 0 are denoted to the weight of the 
vertex i and the edge which flows from i to j, respectively. 
Thus each unknown Xi in equation (2) can be attained 

0032-3861/86/020275~36503.00 
.~C~ 1986 Butterworth & Co. ( P u b l i s h e r s )  Ltd. POLYM ER, 1 986, Vol 27, February 2 7 5  



Solutions for polymerization kinetics by appfication of graph theory." Z. Pu and S. Zaijian 

directly. The value of X~ equals the sum of all paths' 
contributions and the contribution of each path may then 
be calculated. The weight product of all edges along the 
path is taken as the numerator and that of the vertices the 
denominator. Multiplying it by ( -  1) k, we can obtain the 
contribution of one path. Where K is the number of edges. 
We take 1 as the numerator for a source vertex. According 
to these rules, we can write the unknowns of equation (2) 
in the following way. 

Sl: There is only a source vertex. 

occurring, the kinetic scheme may be written as follows. 
The scheme involves three stages: 

(1) initiation: 

I + M  K i l N *  

(2) propagation: 

N*_ 1 + M Kp.  N~(n > 1) 

1 

all  

1 
S l  ~ -  

al 1 (4) 

X2: One path 

( -  1) a12 

alia22 

a12 
X 2 = - - -  

alia22 (5) 

X3: Two paths 

( -  1) z a12a23 
al la22a33 

(3) transfer: 

N * + M  r t  ' ~N.+N~ '  

where I, M, N* and N', denote the initiator, monomer, 
active n-mer and dead n-mer, respectively; Ki, gp and Kt 
are the rate constants for initiation, propagation and 
transfer, respectively. 

The differential rate equations corresponding to the 
above kinetic scheme are: 

dI/dt = - KilM (8) 

dN*/dt=KilM + Kt ~. N * M - K p N * M - K t N ~ ' M  (9) 
n~>l 

dN*/dt = KpN*_ ~ M - KpN* M - KtN* M (10) 

dN'./dt = KtN* M (11) 

( -  1) 
a 1 3  

alia33 

a13 a12a23 X a -  - -  
alla33 allaE2aa3 (6) 

If we denote X = SbKpMdt, we can obtain dX/dt = KpM. 
For convenience, we shall adopt the following shorthand 
notations: 

K i / K  p = ~x Kt/Kp = fl 

X4: Four paths 

(-- 1) a a12a23a34 
alla22aa3a44 

(_  1): a12a24 
alla22a44 

(_1)2 al 3a34 

al 1a33a44 

Substituting these notations into equations (8)-(11) and 
using the Laplace transformation, we can obtain the 
following set of linear equations. (Where s is a complex 
parameter, it is defined as F(s)= S~ ~°f(x) e-sxdX) 

(s+~)~b=Io (12) 

~ -  ~)~b + ( s +  1 +f l )Y*  = - f l I  o (13) 

( -  1)x*_1 + (s + 1 + / ~ ) ~ *  = o (14) 

( - 1 )  a 1-----L-4 
al 1a44 

(7) 
a14 a13a34 al2a2a a12a23aa4 

X 4 -  - -  q- t 
alia44 alxaaaa44 alla22a44 alla22a33a44 

( - / ~ ) x . *  + (s)X' .  = o (15) 

Here Jff and 4) are the images of the unknowns in 
equations (8)-(11), and Io is the initial value of initiator. Its 
matrix form is as follows: 

There are m source vertices, if the constant matrix B 
contains m non-zero elements and if these elements are 
not equal to 1, rather a, b, c . . . .  then correspondingly we 
multiply by a, b, c . . .  

The graphic method on living polymerization with monomer 
transfer 

In a living polymerization, when monomer transfer is 

a l l  

a t 2  a22 

a23 a33 

a34 a44 

am- t ,m amm 

X, I 

il; 0 
_, .J  
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where m=  n+  2. The subscript i indicates the unknown 
ordinal and j that of the equation. This corresponds to a 
weighted digraph consisting of two source vertices and 
( m -  1) edges• The graph is as follows: 

We can obtain each solution in equations (8)-(11) as 
follows: 

A 
X~ = - -  (17) 

a l l  

Aa~2 B 
X 2 - - - +  

alia22 a22 (18) 

Aa12a23 Ba23 
X 3 - 

at la22a33 a22a33 (19) 

X ~ = ( -  1)ra-lAa12a23"'" am-1,m 

a11a22a33 . . .amm 

+ ( _  1)~ - 2Ba23a34" " " a ~ -  l,m 

a22a33044 . . .amm 
(20) 

Using the Heaviside expansion or the table of Laplace 
transforms, we can obtain: 

I = I o  e- '~ (21) 

N*=Io{1 + ~ ( 1 - e - ~ l + o ) ~ ) q  1 ( ~ _ )  e-.X(l_e-II+~-=}~)} 

(22) 

I ~  Io(~ -/3) 
N* - ~F~l -t e-~F(I+~_~)~.) (23) 

(1 fl) +alx(.) ( l + f l - ~ ) "  

n 

~(1 +fl-oO" e-~F~l +t~ .}x(.}-(1 ±fl)n! 
24) 

effect, the kinetic mechanism may be represented as 
follows 

initiation : 

propagation' 

transfer: 

I + M  --Ki ,N* 

N * + M  Kp , N* 

N ~ + M - K p  ,N* 

N. *_ I+M KP , N *  (n~>3) 

, Kt N. + M  , N, ,+Nt:  ~ 

where N 1 ++ is the active monomer due to transfer, which is 
different from that due to initiationN*. 

The kinetic equations are: 

dI/dt = - K~IM (25) 

dN~/dt = K~IM - K'pNtM - KtNI*M (26) 

dN,++/dt-Kt ~ N .*M-K~N,~M (27) 
n ~ > l  

dN*/dt = K'pN*M + K~N, ~M - KpNtM - KtN~M 
(28) 

dN* * * * K,N.  M ,,/dt = KpN,,_ 1M - KpN,, M - (29) 

dN;,/dt = KtN*M (30) 

As mentioned earlier, the matrix form is: 
m 

a l l  

a12 a22 

a13 a33 

a24 a34 

D 

where m --- n + 3. 

a44 

d45 a55 

am - 1 ,m dram 

m 

X 1  

X2 

ix3 
X,  

I • 
i 

I 

i_x~_ 

A 

0 

B~ 

= 0 

• i 

0 

(31) 

The graph corresponding to the above matrix consists 
of two source vertices and m edges. It is as follows 

Evidently the graphic method is more convenient than 
the general method. Where F .  +a}x~.) and FI1 +~_~)x~.~ are 
incomplete gamma functions. Its definition is: 

x 

F'l+t~'x") -- (n I 1), f [ ( l  +fl,x]"-le-"+a'Xd[(1 +fl)x] 

o 

.Q 

The respective solutions in equation (31) are as follows" 

A 
X1 - (32) 

Oll 

OTHER EXAMPES OF GRAPHIC SOLUTION 

The influence of  penuhimate chain element on the monomer 
transfer in living polymerization 

The penultimate chain element will influence the chain 
propagation in a living polymerization• If we consider this 

Aal  2 
X2 - (33) 

a 1 1 0 2 2  

Aal 3 B 
X3 - -t (34) 

al ia3 a33 
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Xm = ( -  1) ' -  2Aal 2a24 '" " am- 1,m 
al 1 a22044 . . . .  amm 

+ ( - -  1) m-2 A a 1 3 a 3 4 " " a m - l , m  

a l  l a33a44 . . ,  amm 

+ ( - -  1)m - 3Ba34a45  "'" am- 1,m (35) 

a 3 3 0 4 4 a 5 5 . . ,  amm 

Replacing the transforms by the originals in equations 
(32)--(35), we obtain the formula for the molecular weight 
distribution function. 

The stereo-configurational sequences in vinyl polymers 
Generally, the theoretical treatment of the config- 

urational sequence distribution has been made using a 
statistical method. We can solve the kinetic equations of 
the living copolymerization in Bernoulli processes with 
the aid of a linear differential technique, also. 

Assuming there are 1 and d optical isomers in each 
structure unit, we have an isotactic placement m consist- 
ing of II or dd pairs, and a syndiotactic placement r 
consisting of id or dl pairs, respectively. Let m* and r* 
represent the active isotactic and syndiotactic sequences, 
respectively, with degree of polymerization n, while m', 
and r', have no activity. 

We can write the kinetic mechanism generating these 
stereoconfigurational sequences as follows: 

I + M  K ~ N *  

N * + M  K m , m *  

N~'+M Kr • r~' 

m,*+M Km ~ m*+l 

m * + M  K~ , , m n + r  1 

r * + M  Kr , , r . +  1 

r,*+M Km , r ' ,+m* 

The differential rate equations corresponding to the 
above scheme are: \ ' .  

dI/dt = - KilM (36) 

dN*/d t=  K i l M - ( K  m +Kr)N~'M ~ (37) 
\ 

d(Ym*)/dt = KmN*M + Km(Zr*)M -/K~(Em*)M (38) 

dm*/dt = Km(N 1" + Er*)M - (K m + K,)m*M (39) 

dm.*/dt = Kmm*_ 1 M - ( K  m + Kr)m*M (40) 
! 

= I (gm + K r ) M d t ,  a = Ki/(Ki + gm) with X 
,d 
0 

and fl = Km/(Km + Kr). 

Substituting these notations into the equations (36)-- 
(40), we use Laplace transforms to replace the unknown 
functions in the above equations. 

Clearly, the matrix form is as follows: 
D 

a l l  

012 a22 

a13 a 2 3 a 3 3  

a14 a34 a44 

a45 

where l = n + 3. 

ass 

a t -  1,1 air 

m 

XI 

X2 
X 3 

X4 
X5 

Xl 
B w 

D ~  

A 
0 
B 

= B (41) 

0 

0 

As the formulae for r*, r', are symmetrically disposed to 
m*, m',, we can obtain the distribution functions of the 
formula only by interchanging fl and (1-fl). The coef- 
ficient matrix (41) corresponds to a graph consisting of 
three source vertices and (l + 1) edges, shown as follows: 

O 

We can obtain every solution in equation (41) quite 
conveniently as follows" 

A 
X1 = - -  (42) 

at1 

Aal2 
X2 = (43) 

a l i a 2 2  

Aa13 Aal2a23 B 
X 3 = ÷ ~ (44) 

a l i a 3 3  a l l a 2 2 a 3 3  a33 

Xt = (_  l)t- 1Aal 2a23 ' ' '  at- l,z + (_  1)t- 2Aal 3a3, . . .  al- l,l 
al  1 a22033 •. .  all a l l a 3 3 0 4 4  • . .  all 

+ ( _  1)l-3Aalga34""at- l,t ~_(_ 1)t- 3Ba34a45"" .al-ld 

al xa4aass.., au aaaa44ass.., au 
+ (_  1)t-4Ba45a56 .. .at- 1,t (45) 

a44055a66.., al l 
As a next step, we again use the formulae from the 

Laplace transform table to replace the transforms with the 
originals. 

Anionic polymerization initiated by electron transfer 
Chain initiation might conceivably be brought about 

by electron transfer in an anionic polymerization. An 
example is the case w here vinyl mesitylene polymerization 
is initiated by sodium-naphthalene in tetrahydrofuran. 
This kinetic mechanism has the following form: 

dI/dt = - KilM (46) 

dN*/dt = K,(2ZN** + ZN*)M - (Kp + Kt)N*M (47) 

dN~/dt = 2KtN~M + KpN*M-(Kp  + Kt)N'~M (48) 

dN~*/dt = ½K~IM - 2(Kp + Kt)N~*M (49) 

dN*/dt = 2KtN*M + KpN*_ 1M - (Kp + Kt)N*M (50) 

dN**/dt = 2KpN*_ 1 M - 2(Kp + Kt)N** M (51) 
r . dN,/dt = KtN, M (52) 

where N** denotes the n-mer with double anions and N* 
that with the single anion. Similarly, we can write their 
matrix form: 
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(/12 

(/14 

(122 

a23 a33 a43 

a44 

a35 

(/46 
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a55 a65 

a66 

a57 a77 a87 

a68 a88 

. • °  

am - 3,m - 1 

a m  - 2 ,m 

am - 1 ,rn - 1 ara,rn - 1 

amm 

x3 

• I 

m 

A I 

BI 
o l 

• i 

• i 

• i 

• i 

o l 

(53) 

where m = 2n + 1. 
Its oriented graph has two source vertices and 

(3m-4 ) /2  (m is even) 

(3m-5) /2  (m is odd) 

edges. The graph is as follows: 

This graph seems much more complicated than others, 
yet it can be solved easily in accordance with the above 
rule. To find the regularity, we may write more terms. 

XI: There is only a source vertex. 

G 
X2: There is a source vertex and one path. 

@ 

X3: There are three paths. 

X4: There is one path. 

Xs: There are four paths• 

when m is even. 

X,~_ i: There are (m + 2)/2 paths in all. 

X m :  There is one path only• 

when m is odd. 

X,,_ 1 • There is only one path. 

Xm: There are (m+ 1)/2 paths in all. 

To obtain each solution for the unknowns in equation 
(53), we have only to sum up the contributions of each 
path, respectively• By use of the expressions given in the 
Laplace transform table, the images may be replaced by 
the respective originals. 
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We have provided a simple account of the basic results 
and techniques of graphic theory, with particular em- 
phasis on its application in solving polymerization kin- 
etics problems. A detailed analysis of the living polymeri- 
zation monomer  transfer is presented and some other 
examples of similar systems are used in highlighting of the 
kinetic mechanism. It has been unequivocally shown, that 
the graphic theory is a powerful method for analysing and 
calculating these complicated systems. We have tried to 
describe the graphic method in such a way, that for 
polymer scientists familar with construction of kinetic 
models, the principle of the solving procedure would be 
clearly visible. In conclusion, we believe that the graphic 
theory can be a useful technique for researching polymeri- 
zation kinetic problems, and we intend to apply it in 
further investigations. 
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